skip to main content


Search for: All records

Creators/Authors contains: "Sell, Paul H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I;RI= 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II;RII= 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out tor= 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1shocks that power the ionized gas, withvshock=σwind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas:MIIHIIMIIH2=(12)×109ManddM/dtIIHIIdM/dtIIH2=170250Myr−1. The outer wind has slowed, so thatdM/dtIHII10Myr−1, but it contains more ionized gas,MIHII=5×109M. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p“boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.

     
    more » « less
  2. Abstract

    We investigate galactic winds in the HizEA galaxies, a collection of 46 late-stage galaxy mergers atz= 0.4–0.8, with stellar masses oflog(M*/M)=10.411.5, star formation rates (SFRs) of 20–500Myr−1, and ultra-compact (a few 100 pc) central star-forming regions. We measure their gas kinematics using the Mgiiλλ2796,2803 absorption lines in optical spectra from MMT, Magellan, and Keck. We find evidence of outflows in 90% of targets, with maximum outflow velocities of 550–3200 km s−1. We combine these data with ten samples from the literature to construct scaling relations for outflow velocity versus SFR, star formation surface density (ΣSFR),M*, and SFR/M*. The HizEA galaxies extend the dynamic range of the scaling relations by a factor of ∼2–4 in outflow velocity and an order of magnitude in SFR and ΣSFR. The ensemble scaling relations exhibit strong correlations between outflow velocity, SFR, SFR/R, and ΣSFR, and weaker correlations withM*and SFR/M*. The HizEA galaxies are mild outliers on the SFR andM*scaling relations, but they connect smoothly with more typical star-forming galaxies on plots of outflow velocity versus SFR/Rand ΣSFR. These results provide further evidence that the HizEA galaxies’ exceptional outflow velocities are a consequence of their extreme star formation conditions rather than hidden black hole activity, and they strengthen previous claims that ΣSFRis one of the most important properties governing the velocities of galactic winds.

     
    more » « less
  3. Abstract

    We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution.

     
    more » « less
  4. Abstract We present a z = 0.94 quasar, SDSS J004846.45-004611.9, discovered in the Sloan Digital Sky Survey III (SDSS-III) BOSS survey. A visual analysis of this spectrum reveals highly broadened and blueshifted narrow emission lines, in particular, [Ne v ] λ 3426 and [O iii ] λ 5007, with outflow velocities of 4000 km s −1 , along with unusually large [Ne v ] λ 3426/[Ne iii ] λ 3869 ratios. The gas shows higher ionization at higher outflow velocities, indicating a connection between the powerful outflow and the unusual strength of the high ionization lines. The spectral energy distribution and the i − W3 color of the source reveal that it is likely a core extremely red quasar (ERQ); a candidate population of young active galactic nuclei (AGN) that are violently blowing out gas and dust from their centers. The dominance of host galaxy light in its spectrum and its fortuitous position in the SDSS S82 region allows us to measure its star formation history and investigate variability for the first time in an ERQ. Our analysis indicates that SDSS J004846.45-004611.9 underwent a short-lived starburst phase 400 Myr ago and was subsequently quenched, possibly indicating a time lag between star formation quenching and the onset of AGN activity. We also find that the strong extinction can be uniquely attributed to the AGN and does not persist in the host galaxy, contradicting a scenario where the source has recently transitioned from being a dusty submillimeter galaxy. In our relatively shallow photometric data, the source does not appear to be variable at 0.24–2.4 μ m in the rest frame, most likely due to the dominant contribution of host galaxy starlight at these wavelengths. 
    more » « less
  5. Abstract

    We present a measurement of the intrinsic space density of intermediate-redshift (z∼ 0.5), massive (M*∼ 1011M), compact (Re∼ 100 pc) starburst (ΣSFR∼ 1000Myr−1kpc−1) galaxies with tidal features indicative of them having undergone recent major mergers. A subset of them host kiloparsec-scale, > 1000 km s−1outflows and have little indication of AGN activity, suggesting that extreme star formation can be a primary driver of large-scale feedback. The aim for this paper is to calculate their space density so we can place them in a better cosmological context. We do this by empirically modeling the stellar populations of massive, compact starburst galaxies. We determine the average timescale on which galaxies that have recently undergone an extreme nuclear starburst would be targeted and included in our spectroscopically selected sample. We find that massive, compact starburst galaxies targeted by our criteria would be selectable for14824+27Myr and have an intrinsic space densitynCS(1.10.3+0.5)×106Mpc3. This space density is broadly consistent with ourz∼ 0.5 compact starbursts being the most extremely compact and star-forming low-redshift analogs of the compact star-forming galaxies in the early universe, as well as them being the progenitors to a fraction of intermediate-redshift, post-starburst, and compact quiescent galaxies.

     
    more » « less
  6. Abstract

    We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (M*∼ 1011M), compact starburst galaxies atz= 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ΣSFR∼ 2000Myr−1kpc−2) and powerful galactic outflows (maximum speedsv98∼ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([Oii]λλ3726,3729, Hβ, [Oiii]λλ4959,5007, Hα, [Nii]λλ6549,6585, and [Sii]λλ6716,6731) and absorption (Mgiiλλ2796,2803, and Feiiλ2586) lines that allow us to investigate the kinematics of the cool gas phase (T∼ 104K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (medianne∼ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [Sii]nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)